Name of research institute or organization:

Institut d’Astrophysique et de Géophysique, Université de Liège

Title of project:

High resolution, solar infrared Fourier Transform spectrometry. Application to the study of the Earth atmosphere

Project leader and team:

Philippe Demoulin, Pierre Duchatelet, Emmanuel Mahieu, Ginette Roland (em.), Christian Servais (project leader), Samy Trabelsi, Rodolphe Zander (em.)
Jacqueline Bosseloirs, Olivier Flock, Vincent Van De Weerdt, Diane Zander

Project description:

Contribution to the long-term monitoring of the Earth’s atmosphere has remained the central activity of the Liège group. Regular observations performed at the Jungfraujoch by our two high-performance Fourier-transform infrared (FTIR) spectrometers allow to derive abundances of more than 25 constituents affecting our climate and monitored in the frame of the Kyoto protocol (N₂O, CH₄, CO₂, SF₆…), related to the erosion of the ozone layer in the stratosphere (HCl, ClONO₂, HNO₃, NO, NO₂, HF, COF₂, O₃, CCl₂F₂, CHClF₂, CCl₃F…), or altering the oxidization processes in the troposphere (CO, C₂H₂, C₂H₆, OCS, HCN, H₂CO…). The resulting databases allow the determination of the short-term variability, seasonal modulations, as well as long-term changes affecting most of these species.

During 2007, observers spent 230 days at the Jungfraujoch. Good weather conditions enabled solar observations on 106 days. Regular measurements with a sealed cell containing HBr gas have also been realized, in order to characterize the instrumental line shape. This objectively warrants that the observations are performed consistently at the highest level of quality/performance.

In addition to the constituents routinely retrieved, emphasis was placed in 2007 on some gases related to the tropospheric processes, for example hydrogen cyanide HCN, formaldehyde H₂CO, formic acid H₂CO₂, ethylene C₂H₄ and methane isotopologues. Furthermore, systematic investigations aiming at the retrieval of information on the vertical distribution of water vapour from infrared spectra have been initiated this year.

Methane isotopologues

Due to its high warming potential and its relatively long chemical lifetime (~9 years), atmospheric methane CH₄ plays a major role in the radiative forcing responsible of the greenhouse effect. The cycle of methane is complex and his characterization requires a thoroughly study of the sources and sinks of its main isotopologue as well as the other isotopic species. Different processes are known to fractionate these isotopologues, and hence isotopic abundances are particularly useful to differentiate between various sources of atmospheric methane.

Systematic investigations have been performed to determine the best set of microwindows for the retrieval of ¹³CH₄ and CH₃D from the Jungfraujoch FTIR spectra.
The selected 13CH$_4$ absorption features are located in two different spectral regions: around 1234 cm$^{-1}$ and from 2817 to 2926 cm$^{-1}$. They allow to derive total columns of 13CH$_4$, as well as partial columns between 3.58 and 14 km.

For CH$_3$D retrievals, four microwindows, ranging from 2950 to 3090 cm$^{-1}$, have been selected. They are fitted together to increase the collected information. This multi-windows approach has been compared with a multi-spectra approach, i.e. using only one micro-window, but fitting simultaneously several spectra recorded on the same day and at the same spectral resolution, also to increase the information content. The multi-microwindows strategy provides slightly more vertical information.

Preliminary results of the retrievals of these methane isotopologues are displayed in Figure 1 and 2.

![Figure 1. Comparison of 13CH$_4$ partial columns between 3.58 and 14 km, derived for the period January 2005 to August 2006 from two different spectral regions: one line around 1234.2 cm$^{-1}$ (“MCT”, light blue dots) and 7 lines from 2817 to 2926 cm$^{-1}$ (“InSb”, yellow triangles). The relative differences (top panel, 100*(MCT-InSb)/InSb) reveal a significant mean bias close to 4% between both 13CH$_4$ partial columns time series, probably arising from inconsistencies in spectroscopic parameters.](image)

Ethylene (C$_2$H$_4$)

Ethylene originates from a variety of anthropogenic (e.g. cars in urban areas) and natural (e.g. plants, volcanoes, forest fires) sources. Given its very short chemical lifetime combined with weak infrared absorption, C$_2$H$_4$ detection is difficult from FTIR spectra, in particular at a remote high-altitude site like the Jungfraujoch. However, during special events, e.g. under enhanced biomass burning, it is possible to clearly see ethylene absorptions in our spectra. Figure 3 presents such an example of ethylene enhancement above the Jungfraujoch, with an atmospheric contents more than 4 times the normal value.
Figure 2. Daily means CH$_3$D total columns above Jungfraujoch for the year 2005, derived from the multi-microwindows approach [four microwindows, ranging from 2950 to 3090 cm$^{-1}$] (light blue dots) and from the multi-spectra approach [one microwindow around 3070.9 cm$^{-1}$; simultaneous fitting of several spectra recorded on the same day and at the same spectral resolution] (yellow triangles). The multi-microwindows strategy provides slightly more vertical information. Only FTIR spectra recorded at solar zenith angles between 70 and 80° have been analyzed here. Relative differences between the two retrieval strategies are plotted in the upper panel. A slight significant relative difference of 1.5 ± 1.0 % can be noticed, with the multi-microwindows approach giving higher abundances.

Water vapour

In the frame of GAW-CH1 and AGACC2 projects, preliminary investigations have been performed to derive total and partial vertical abundances of water vapour from Jungfraujoch infrared solar observations, including historical atmospheric spectra recorded with a grating spectrometer from the 1968 to the late 80s. To retrieve water vapour from the FTIR spectra, more than 60 microwindows, encompassing one or several H$_2$O lines and located in spectral regions ranging from 700 to 4300 cm$^{-1}$, have been selected and tested to develop a robust fitting strategy. At this stage, averaging kernels analysis indicates a quite good sensitivity from the altitude site (3.58 km) up to 11 km. We hope to derive 3 to 4 independent pieces of information on the water vertical profile. In the most favorable cases, the sensitivity range may extend up to 15 km.

Investigation of micro-windows containing water vapour isotopologues (H$_2^{17}$O, H$_2^{18}$O and HDO) has also started. The analysis of the atmospheric isotopologic water vapour composition provides valuable information on many climate, chemical and atmospheric circulation processes.

1 Swiss Global Atmosphere Watch

Figure 3. Example of detection of ethylene (C_2H_4) enhancement above the Jungfraujoch. The blue curve shows a spectrum recorded in January 1998 at a zenith angle of 89.8°, where the ethylene absorption is clearly visible (grey arrow). Four days later, another FTIR spectrum (red curve), obtained under similar geometric conditions, corresponds to background atmospheric ethylene contents. A total column of 1.18×10^{15} molec./cm2 was retrieved in the first case, i.e. about four times larger than the mean total column value of 2.64×10^{14} molec./cm2 derived for 1998.

Comparison with ACE-FTS measurements

In support of the validation of the Canadian ACE-FTS spectrometer, flying onboard the SCISAT-1 satellite, specific observational campaigns have again been organized at the Jungfraujoch in 2007, to record as many coincident measurements as possible. Amongst the 38 occultations of ACE-FTS that occurred in 2007 in the vicinity of Jungfraujoch (closer than 1000 km), we succeeded in obtaining coincident measurements for 13 of them.

Besides specific ongoing validation efforts, we have compared the abundance of different gases retrieved from the Jungfraujoch spectra with ACE-FTS data. One of these gases is hydrogen cyanide (HCN), for which we recently developed a new retrieval strategy, using simultaneously five HCN lines and specific microwindows for the proper simulation of water vapour absorptions (the major interference in the fitted microwindows, even at the high-altitude site of the Jungfraujoch). Our HCN retrievals provide good sensitivity up to 20 km, thus permitting comparisons with the ACE-FTS measurements in the upper troposphere and lower stratosphere. Figure 4 shows such a comparison, for 117 occultations recorded between March 2004 and May 2007. The two data sets are in excellent agreement in terms of absolute value, amplitude and phase of the seasonal modulation.
Figure 4. Comparison of HCN partial columns retrieved from Jungfraujoch spectra (black dots) or by ACE-FTS satellite instrument (red dots), for a similar altitude range (7-20 km for Jungfraujoch and 7-21 km for ACE). The 117 occultations from the ACE instrument were recorded between March 2004 and May 2007 in the 41-51°N latitudinal belt. Green circles show the Jungfraujoch a priori partial columns (i.e. the starting point for the retrieval procedure).

OMI validation

We are also participating to the validation of the OMI (Ozone Monitoring Instrument) experiment, flying on board the NASA Aura satellite. For that reason, we regularly measure formaldehyde (H\textsubscript{2}CO) – one of the OMI products – at the Jungfraujoch, thanks to a dedicated optical filter. During 2007, 349 formaldehyde spectra were recorded. Although the infrared H\textsubscript{2}CO absorption is extremely weak, the quality of the FTIR spectra is sufficient to deduce the formaldehyde column with a single measurement precision estimated to about 10 \% and H\textsubscript{2}CO is now becoming a standard product provided by our group.

Aura / IRWG campaign

In support of the validation of the 4 remote-sounding instruments aboard the NASA Aura satellite (MLS, TES, HIRDLS and OMI, http://aura.gsfc.nasa.gov/instruments/), we participated in the 2007 NDACC/IRWG3 - Aura intercomparison campaign, which took place from 15 August to 15 September 2007. During this period, we obtained 383 spectra at the Jungfraujoch, recorded over 19 days. Vertical volume mixing ratio profiles of O\textsubscript{3}, HNO\textsubscript{3} and CO and the total column of O\textsubscript{3} will be compared with Aura instruments measurements.

3 InfraRed Working Group of the Network for the Detection of Atmospheric Composition Change
Key words:
Earth atmosphere, climate change, greenhouse gases, ozone layer, long-term monitoring, infrared spectroscopy

Internet data bases:

Collaborating partners/networks:

Scientific publications and public outreach 2007:

Refereed journal articles

Conference papers

Duchatelet P., E. Mahieu, P. Demoulin, M. De Mazière, C. Senten, P. Bernath, C. Boone and K. Walker, Approaches for retrieving abundances of methane isotopologues in the frame of the AGACC project from ground-based FTIR

Data books and reports

Mahieu, E., P. Théate et V. Brahy, La destruction de la couche d'ozone, dans le chapitre 9 du Rapport analytique 2006-2007 sur l'état de l'environnement wallon,

Magazine and Newspapers articles

Radio and television
“L'avenir sera-t-il caniculaire ?”, participation of Emmanuel Mahieu to the “Controverse” debate about human influence over climatic changes, Belgian television RTL-TVI, February 4, 2007

“Recovery of the ozone layer”, by Emmanuel Mahieu, Belgian radio RTBF – La Première, September 13, 2007

“La recherche : notre avenir !”, interview of Christian Servais at the Jungfraujoch, in a film by Bernard Balteau, created for the 80th anniversary of Belgian FNRS (Fonds national de la Recherche scientifique), IPEP and RTBF, October 1, 2007

Address:
Institut d’Astrophysique et de Géophysique - Université de Liège
allée du VI août, 17 - Bâtiment B5a
B-4000 Sart Tilman (Liège, Belgique)

Contacts:
- Philippe Demoulin Tel. +32 4 366 9785 e-mail: demoulin@astro.ulg.ac.be
- Pierre Duchatelet Tel. +32 4 366 9786 e-mail: duchatelet@astro.ulg.ac.be
- Emmanuel Mahieu Tel. +32 4 366 9786 e-mail: mahieu@astro.ulg.ac.be
- Ginette Roland Tel. +32 4 342 2594 e-mail: roland@astro.ulg.ac.be
- Christian Servais Tel. +32 4 366 9784 e-mail: servais@astro.ulg.ac.be
- Samy Trabelsi Tel. +32 4 366 9785 e-mail: trabelsi@astro.ulg.ac.be
- Rodolphe Zander Tel. +32 4 366 9756 e-mail: zander@astro.ulg.ac.be

URL: http://girpas.astro.ulg.ac.be/